If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24=90/x^2
We move all terms to the left:
24-(90/x^2)=0
Domain of the equation: x^2)!=0We get rid of parentheses
x!=0/1
x!=0
x∈R
-90/x^2+24=0
We multiply all the terms by the denominator
24*x^2-90=0
We add all the numbers together, and all the variables
24x^2-90=0
a = 24; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·24·(-90)
Δ = 8640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8640}=\sqrt{576*15}=\sqrt{576}*\sqrt{15}=24\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{15}}{2*24}=\frac{0-24\sqrt{15}}{48} =-\frac{24\sqrt{15}}{48} =-\frac{\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{15}}{2*24}=\frac{0+24\sqrt{15}}{48} =\frac{24\sqrt{15}}{48} =\frac{\sqrt{15}}{2} $
| 3=-16x^2+56x+6 | | (x-24)/x=0.83 | | 9(n-3)=72=3 | | 8=6/7t+5 | | 2(n-4)=12=2 | | 3x^2=3=0 | | 21+4u=41 | | X4+x2=30 | | 2=(v+7) | | -16x^2+56x+6=0 | | =7+9(-2n+9)+1 | | 0=3(2-(2x)/40) | | -7-4=3x+8-2x | | 2x-5+3x10=180 | | -2/3-y=24 | | =-6(-6a-3)-2+8a | | (x−9)(x−10)=−11x+83 | | 3x-21=5x-10 | | 10/11x=80 | | Z^2-10z=-24 | | (r+5)(r-2)=18 | | 9r+5)(r-2)=18 | | =-4(5+n)+n+6 | | (5x-7)-2x=7x–(5x-7) | | .5x+3.5=2/3x+1/3 | | 24=7v= | | 0=x^2+7x-10 | | x+0.03x=100 | | 0.16x=129000 | | 1x+1/4x=10 | | N+1/4n=10 | | 4.9x^2-9.2x-16=0 |